Sorting Out the Candidates

July 2, 2014

At this point, I have created rgb images for all the objects I want to check out in the field of view of interest. There were hundreds of objects, but that is why computer programming exists. So that they do all the hard work. Unfortunately, there are some things that machines aren’t that good at. So, as a human, my job is to look at these images and identify candidates. Brown dwarfs are dim in the visible and shiny in the infrared. So, my job is to look for dots that are like that. Take this picture, for example:

J193057.83-230909.0

The bottom left one is from DSS Red, which was taken the earliest, around 1990 or so, the top left one is from 2MASS, which was taken around 2000, and the right ones are from WISE, taken around 2010. The top and bottom left only differ on how the colors are scaled in terms of brightness. The top left one is linear stretch, and the bottom left one is logarithmic stretch. As you can see, logarithmic stretch is very helpful because  with linear, the star on top is so bright that the other dots are comparatively almost nothing. With logarithmic stretch though, a star 10 times as bright can be treated as if it were only twice as bright, and 100 times as bright as if it were only three times as bright. This allows dim objects to pop out.

This one is of interest because you can observe proper motion here. Each one were taken around a decade apart, and as you can see, the dots have moved slightly. It suggests of an object relatively close. As to whether it is a brown dwarf, I am not sure, but I am keeping tabs on it just in case. It is something I am gonna have to discuss with the professor.

Advertisements

I Got Sent More Reading Materials

June 5, 2014

I don’t have anything particular to say about them. They are pretty much a technical summary of brown dwarfs found, classification of spectra, proper motion (angle speed in sky), and distance, which were found using the 2MASS survey and WISE telescope. You can read them here, here, and here, if you want to learn more about brown dwarfs. They are pretty technical, though.

Update: You know what? I was mulling things over, and turns out there are a few things I want to comment about. Firstly, there is a spectral classification cooler than the T type, called the Y type, which is characterized by absorption from ammonia. These brown dwarfs are cooler than 600 K. The articles above talk about some of those.

Secondly, the articles above have a large focus on high proper motion brown dwarfs. Higher proper motion implies that the object are more probable to be closer to us than those having low proper motion. Think about it this way, when you are in a car, things that are far away look slower than things that are closer to you. It’s not so much that in reality things that are farther away are slower, as it is the fact that things that are farther away has lesser angular movement because distances look smaller when farther away.

How are proper motion found? Well, turns out that the 2MASS survey took observations a decade previous to WISE telescope. So, you look at the pictures from 2MASS, and you look at one from WISE, and see how much the position has changed in angle. The objects are likely to have constant speed, so just divide the angle difference by the year difference.

What is proper motion helpful for? Well, it let us know that an object is likely to be close to the solar system. This is supposed to help bridge the gap in our knowledge of the solar system neighborhood. The distance itself can later be taken using parallax. Aside from that, finding close brown dwarfs is also helpful because it will help us study the atmosphere better. We still have an imperfect model on the process behind condensation and cloud formation in the brown dwarf atmosphere, and the more of them we find, the better we will know the details behind it.


Brown Dwarf Pics

June 3, 2014

This is what an image for brown dwarf looks like, just a faint dot. As you can see in the link, each of those four images represent the different wavelength of infrared the pictures were taken. Obviously WISE band 1 and 2 (WISE is the name of the telescope) are best for this sort of stuff. Oh, and fun fact, this one was discovered by my prof.

 


The Point of My Research

June 2, 2014

I talked with my prof and got further information on what the point of the project is. It has to do with the Kepler space telescope. If you haven’t heard, two of its four wheels, which are used to point the telescope to a location, are broken, and so the telescope can’t maintain its sight to a position in the sky. Not only is there the fact that it is rotating around the Earth, the light from the sun has momentum. The light will push the telescope, and the irregularity of the telescope’s shape causes it to torque. The only way for the telescope to not be perturbed is to lie perpendicular to the sun. Unfortunately, that means that it can only observe in the plane of ecliptic, and it can’t maintain the same field of view throughout the year as the telescope has to maintain perpendicularity to the sun as the Earth orbits the sun. Nevertheless, useful science can be done. The telescope will observe certain fields of view, and when time is up, it will rotate again to another field of view that will maintain perpendicularity.

The point where my research comes in has to do with the way the above procedure means that the antenna is not facing the Earth properly. That means in order for them to continually observe an area in space, they will have to keep the information in the hard drive, and then send it back to Earth once the observation period is over. That means they have a limited amount of data they can store, and so the mission will have to be picky in which data they store. Looking for brown dwarfs to observe is supposed to help out Kepler in keeping . There are areas where not much brown dwarfs discovered, so what I am doing is helping that process out.

For now, I am just installing the astropy library for Python language. l will be looking at some picture of brown dwarfs, download them, and hopefully astropy can take those pictures and present them to me.

Source

http://keplerscience.arc.nasa.gov/K2/MissionConcept.shtml


Introduction to my Research: Brown Dwarfs

June 2, 2014

So, I got accepted into a summer research program. They are going to pay me and everything, yay! Which is why I thought I should blog about my research.

What I am doing this summer is basically sift through infrared data and looking for object called brown dwarfs and classifying them. Brown dwarfs are in a way objects that represent the transitions between planets and stars. They are much more massive than planets, enough to have fused deuterium (hydrogen, but with a neutron) for a short while, but they are not massive enough to fuse regular hydrogen. The mass may range from 13 to 80 Jupiters. After the short lived deuterium fusion phase, they just start cooling down. They tend to emit most of the light in the near infrared zone. Size wise, they are not too different from Jupiter because the interior pressure is governed by electron degeneracy. Basically, the pressure of electrons due to them not being able to occupy the same energy states is what holds the object from further collapse. In a pressure dominated by degenerate matter, adding more mass doesn’t cause an object to grow much.

How does one empirically distinguish a brown dwarf from a low mass star? There is a simple test called the Lithium test. If one can detect lithium, it is probably a brown dwarf. Stars are hot enough to be able to fuse lithium, unlike brown dwarfs, and lithium fuses at a similar temperature to hydrogen. That said, the highest mass brown dwarfs can burn lithium, so at the high end range of brown dwarf mass, they are indistinguishable from stars. Well, there is another way, but it is harder to do. Basically, measure the temperature and mass of a brown dwarf binary. The theory is that an object of certain mass will have a different temperature curve as it ages than one of a different mass. If an object is massive enough to be a star, the temperature will stabilize due to sustained fusion, if not it keeps cooling down.

Before we go on, I would like to address how we can know what compounds such a distant object have. We look at the spectrum of light from the object, and see which wavelengths are missing. Certain compounds absorbs light at certain specific frequencies because of the way the electrons are configurated energy wise. Electrons can only occupy certain energies, and so they will absorb only light of certain energies.  So, when you look at the spectrum of light coming off the planet, there will be chunks of light that will be missing corresponding to the energy absorbed. Imagine that the rainbow has various thin strips on it missing, that is what it is like.

Brown dwarfs come in two spectral type, the L type and the T type, with L being the hotter, more luminous type. The temperature itself is correlated with luminosity by the fourth power, so measuring luminosity gives you the temperature. The spectral types are related to what compounds one detects in the atmosphere. The L types have the temperature range of 1300 K to 2500 K. The hottest L type show vanadium oxide and titanium oxide absorption signatures in the spectra, and as the brown dwarf gets cooler, this transitions to a spectra with absorption due to metal hydride (FeH, MgH, CaH, etc) and Alkali metal compounds (NaI, KI, etc), while the metal oxide absorption disappears. The T type are objects below 1500 K, and the spectra contains absorptions from methane, water, ammonia, and CO. Does this mean that the transition of  spectra represents another good way to gauge the temperature of the object? Yes for early L and late T. Not so much for the transition between late L to early T. In that section, the temperature doesn’t change very much while the spectra changes. A point of note is that the temperature/spectra correlation works much better with optical than infrared.

There is a reasonable explanation for the transitions of spectra a brown dwarf undergoes. As the brown dwarf cools, the metal oxides condense and fall off deeper into the atmosphere. This uncovers the spectra from the alkali metals and hydride metals. As the temperature goes lower to the T type level, clouds become an important component. This explains the rapid change in spectra with the slower change in temperature as this transition of dusty atmosphere occurs around a short range around 1400 K.  At temperatures lower than 1400 K, the dust sinks and the metal hydrides condense while conditions are right for the reaction of CO+H2=H2O+CH4 occurs, meaning carbon monoxide with hydrogen reacts to for water and methane. This explains the methane absorption that dominates in the T brown dwarfs.

Finally, I would like to point out the model pointed out above for the brown dwarfs differs with metallicity. Metals in astronomy are all elements with higher atomic number than helium. Brown dwarfs are allowed to be more massive and hotter with less metal.

This is a basic summary of what we know about brown dwarfs. If you want to know more about them, you can of course go ahead and read what I linked below. There has also been some advances, like the discovery of below freezing brown dwarfs. And there are mysteries to be solved, like the fact that there are three scenarios for condensations and dusts that plays a key role in the late L to early T spectrum.

I have done all this preliminary reading. Hopefully I know what I will be doing. Granted, there will be some fumbling around as this is my first legit science project ever.

Source and reading materials

http://www.annualreviews.org/doi/abs/10.1146/annurev.astro.42.053102.134017?journalCode=astro

http://web.archive.org/web/20060928065124/http://www.carnegieinstitution.org/News4-3,2001.html (brown dwarf)

https://en.wikipedia.org/wiki/Brown_dwarf